Ruprecht-Karls-Universität Heidelberg
COS Heidelberg Banner
Animal Physiology / Developmental Biology

Beate Wittbrodt

Beate Wittbrodt
Im Neuenheimer Feld 230
69120 Heidelberg
Fon +49 6221 54-6496 +49 6221 54-5662
Fax +49 6221 54-5639
ed.grebledieh-inu.soc TEA tdorbttiw.etaeb

 

 

Publications:

Alten L, Schuster-Gossler K, Eichenlaub MP, Wittbrodt B, Wittbrodt J, Gossler A. (2012). A novel mammal-specific three partite enhancer element regulates node and notochord-specific Noto expression. 1. PLoS One. 2012;7(10):e47785.
Abstract
The vertebrate organizer and notochord have conserved, essential functions for embryonic development and patterning. The restricted expression of developmental regulators in these tissues is directed by specific cis-regulatory modules (CRMs) whose sequence conservation varies considerably. Some CRMs have been conserved throughout vertebrates and likely represent ancestral regulatory networks, while others have diverged beyond recognition but still function over a wide evolutionary range. Here we identify and characterize a mammalian-specific CRM required for node and notochord specific (NNC) expression of NOTO, a transcription factor essential for node morphogenesis, nodal cilia movement and establishment of laterality in mouse. A 523 bp enhancer region (NOCE) upstream the Noto promoter was necessary and sufficient for NNC expression from the endogenous Noto locus. Three subregions in NOCE together mediated full activity in vivo. Binding sites for known transcription factors in NOCE were functional in vitro but dispensable for NOCE activity in vivo. A FOXA2 site in combination with a novel motif was necessary for NOCE activity in vivo. Strikingly, syntenic regions in non-mammalian vertebrates showed no recognizable sequence similarities. In contrast to its activity in mouse NOCE did not drive NNC expression in transgenic fish. NOCE represents a novel, mammal-specific CRM required for the highly restricted Noto expression in the node and nascent notochord and thus regulates normal node development and function.
Ramialison M, Reinhardt R, Henrich T, Wittbrodt B, Kellner T, Lowy CM, Wittbrodt J. (2012). Cis-regulatory properties of medaka synexpression groups. Development. 139(5):917-28.
Abstract
During embryogenesis, tissue specification is triggered by the expression of a unique combination of developmental genes and their expression in time and space is crucial for successful development. Synexpression groups are batteries of spatiotemporally co-expressed genes that act in shared biological processes through their coordinated expression. Although several synexpression groups have been described in numerous vertebrate species, the regulatory mechanisms that orchestrate their common complex expression pattern remain to be elucidated. Here we performed a pilot screen on 560 genes of the vertebrate model system medaka (Oryzias latipes) to systematically identify synexpression groups and investigate their regulatory properties by searching for common regulatory cues. We find that synexpression groups share DNA motifs that are arranged in various combinations into cis-regulatory modules that drive co-expression. In contrast to previous assumptions that these genes are located randomly in the genome, we discovered that genes belonging to the same synexpression group frequently occur in synexpression clusters in the genome. This work presents a first repertoire of synexpression group common signatures, a resource that will contribute to deciphering developmental gene regulatory networks.
Souren M, Martinez-Morales JR, Makri P, Wittbrodt B, Wittbrodt J. (2009). A global survey identifies novel upstream components of the Ath5 neurogenic network. 3. Genome Biol. 2009;10(9):R92.
Abstract
BACKGROUND: Investigating the architecture of gene regulatory networks (GRNs) is essential to decipher the logic of developmental programs during embryogenesis. In this study we present an upstream survey approach, termed trans-regulation screen, to comprehensively identify the regulatory input converging on endogenous regulatory sequences. RESULTS: Our dual luciferase-based screen queries transcriptome-scale collections of cDNAs. Using this approach we study the regulation of Ath5, the central node in the GRN controlling retinal ganglion cell (RGC) specification in vertebrates. The Ath5 promoter integrates the input of upstream regulators to enable the transient activation of the gene, which is an essential step for RGC differentiation. We efficiently identified potential Ath5 regulators that were further filtered for true positives by an in situ hybridization screen. Their regulatory activity was validated in vivo by functional assays in medakafish embryos. CONCLUSIONS: Our analysis establishes functional groups of genes controlling different regulatory phases, including the onset of Ath5 expression at cell-cycle exit and its down-regulation prior to terminal RGC differentiation. These results extent the current model of the GRN controlling retinal neurogenesis in vertebrates.
Ramialison M, Bajoghli B, Aghaallaei N, Ettwiller L, Gaudan S, Wittbrodt B, Czerny T, Wittbrodt J. (2008). Rapid identification of PAX2/5/8 direct downstream targets in the otic vesicle by combinatorial use of bioinformatics tools. Genome Biol. 9(10):R145.
Abstract
BACKGROUND: The pax2/5/8 genes belonging to the PAX family of transcription factors are key developmental regulators that are involved in the patterning of various embryonic tissues. More particularly, their function in inner ear specification has been widely described. However, little is known about the direct downstream targets and, so far, no global approaches have been performed to identify these target genes in this particular tissue. RESULTS: Here we present an original bioinformatics pipeline composed of comparative genomics, database querying and text mining tools, which is designed to rapidly and specifically discover PAX2/5/8 direct downstream targets involved in inner ear development. We provide evidence supported by experimental validation in medaka fish that brain 2 (POU domain, class 3, transcription factor 2), claudin-7, secretory pathway component sec31-like and meteorin-like precursor are novel direct downstream targets of PAX2/5/8. CONCLUSIONS: This study illustrates the power of extensive mining of public data repositories using bioinformatics methods to provide answers for a specific biological question. It furthermore demonstrates how the usage of such a combinatorial approach is advantageous for the biologist in terms of experimentation time and costs.
Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB, Plasterk RH. (2006). Differences in vertebrate microRNA expression. Proc Natl Acad Sci U S A. 103(39):14385-9.
Abstract
MicroRNAs (miRNAs) attenuate gene expression by means of translational inhibition and mRNA degradation. They are abundant, highly conserved, and predicted to regulate a large number of transcripts. Several hundred miRNA classes are known, and many are associated with cell proliferation and differentiation. Many exhibit tissue-specific expression, which aids in evaluating their functions, and it has been assumed that their high level of sequence conservation implies a high level of expression conservation. A limited amount of data supports this, although discrepancies do exist. By comparing the expression of approximately 100 miRNAs in medaka and chicken with existing data for zebrafish and mouse, we conclude that the timing and location of miRNA expression is not strictly conserved. In some instances, differences in expression are associated with changes in miRNA copy number, genomic context, or both between species. Variation in miRNA expression is more pronounced the greater the differences in physiology, and it is enticing to speculate that changes in miRNA expression may play a role in shaping the physiological differences produced during animal development.
Henrich T, Ramialison M, Wittbrodt B, Assouline B, Bourrat F, Berger A, Himmelbauer H, Sasaki T, Shimizu N, Westerfield M, Kondoh H, Wittbrodt J. (2005). MEPD: a resource for medaka gene expression patterns. Bioinformatics. 21(14):3195-7.
Abstract
The Medaka Expression Pattern Database (MEPD) is a database for gene expression patterns determined by in situ hybridization in the small freshwater fish medaka (Oryzias latipes). Data have been collected from various research groups and MEPD is developing into a central expression pattern depository within the medaka community. Gene expression patterns are described by images and terms of a detailed medaka anatomy ontology of over 4000 terms, which we have developed for this purpose and submitted to Open Biological Ontologies. Sequences have been annotated via BLAST match results and using Gene Ontology terms. These new features will facilitate data analyses using bioinformatics approaches and allow cross-species comparisons of gene expression patterns. Presently, MEPD has 19,757 entries, for 1024 of them the expression pattern has been determined.
Quiring R, Wittbrodt B, Henrich T, Ramialison M, Burgtorf C, Lehrach H, Wittbrodt J. (2004). Large-scale expression screening by automated whole-mount in situ hybridization. Mech Dev. 121(7-8):971-6.
Abstract
Gene expression profiling is an important component of functional genomics. We present a time and cost efficient high-throughput whole-mount in situ technique to perform a large-scale gene expression analysis in medaka fish (Oryzias latipes) embryos. Medaka is a model system ideally suited for the study of molecular genetics of vertebrate development. Random cDNA clones from an arrayed stage 20 medaka plasmid library were analyzed by whole-mount in situ hybridization on embryos of three representative stages of medaka development. cDNA inserts were colony PCR amplified in a 384-format. The PCR products were used to generate over 2000 antisense RNA digoxigenin probes in a high-throughput process. Whole-mount in situ hybridization was carried out in a robot and a broad range of expression patterns was observed. Partial cDNA sequences and expression patterns were documented with BLAST results, cluster analysis, images and descriptions, respectively; collectively this information was entered into a web-based database, "MEPD" (http://www.embl-heidelberg.de/mepd/), that is publicly accessible.
Loosli F, Del Bene F, Quiring R, Rembold M, Martinez-Morales JR, Carl M, Grabher C, Iquel C, Krone A, Wittbrodt B, Winkler S, Sasado T, Morinaga C, Suwa H, Niwa K, Henrich T, Deguchi T, Hirose Y, Iwanami N, Kunimatsu S, Osakada M, Watanabe T, Yasuoka A, Yoda H, Winkler C, Elmasri H, Kondoh H, Furutani-Seiki M, Wittbrodt J. (2004). Mutations affecting retina development in Medaka. Mech Dev. 121(7-8):703-14.
Abstract
In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.
Henrich T, Ramialison M, Quiring R, Wittbrodt B, Furutani-Seiki M, Wittbrodt J, Kondoh H; Medaka Expression Pattern Database. (2003). MEPD: a Medaka gene expression pattern database. Nucleic Acids Res. 31(1):72-4.
Abstract
The Medaka Expression Pattern Database (MEPD) stores and integrates information of gene expression during embryonic development of the small freshwater fish Medaka (Oryzias latipes). Expression patterns of genes identified by ESTs are documented by images and by descriptions through parameters such as staining intensity, category and comments and through a comprehensive, hierarchically organized dictionary of anatomical terms. Sequences of the ESTs are available and searchable through BLAST. ESTs in the database are clustered upon entry and have been blasted against public data-bases. The BLAST results are updated regularly, stored within the database and searchable. The MEPD is a project within the Medaka Genome Initiative (MGI) and entries will be interconnected to integrated genomic map databases. MEPD is accessible through the WWW at http://medaka.dsp.jst.go.jp/MEPD.

/var/www/cos/ / http://www.cos.uni-heidelberg.de/ Beate Wittbrodt _e