Ruprecht-Karls-Universität Heidelberg
COS Heidelberg Banner

Dr. Guido Grossmann



ORCID: 0000-0001-7529-9244              Google Scholar



Denninger, P, Reichelt, A, Schmidt, VAF, Mehlhorn, DG, Asseck, LY, Stanley, CE, Keinath, NF, Evers, JF, Grefen, C, and Grossmann, GDistinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr. Biol. doi: 10.1016/j.cub.2019.04.059; preprint on bioRxiv doi: 10.1101/534545 (2019)

Brost, C, Studtrucker, T, Reimann, R, Denninger, P, Czekalla, J, Krebs, M, Fabry, B, Schumacher, K, Grossmann, G, and Dietrich P. Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. Plant J. doi: 10.1111/tpj.14371 (2019)



Wan, W-L, Zhang, L, Pruitt, R, Zaidem, M, Brugman, R, Ma, X, Krol, E, Perraki, A, Kilian, J, Grossmann, G, Stahl, M, Shan, L, Zipfel, C, van Kan, JAL, Hedrich, R, Weigel, D, Gust, AA, and Nürnberger, T. Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytoldoi: 10.1111/nph.15497. (2018) 


Stanley, CE, Shrivastava, J, Brugman, R, Heinzelmann, E, Frajs, V, Bühler, A, van Swaay, D, and Grossmann, GFabrication and Use of the Dual-Flow-RootChip for the Imaging of Arabidopsis Roots in Asymmetric Microenvironments. Bio-protocol 8(18): e3010. DOI: 10.21769/BioProtoc.3010. (2018)


Stanley, CE, Shrivastava, J, Brugman, R, Heinzelmann, E, van Swaay, D, and Grossmann, G. Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels. New Phytol; doi: 10.1111/nph.14887. Preprint available on bioRxiv doi: 10.1101/126987 (2018)


Grossmann, G*, Krebs, M*, Maizel, A*, Stahl, Y*, Vermeer, JEM*, and Ott, T. Green light for quantitative live-cell imaging in plants. J Cell Sci; doi: 10.1242/jcs.209270 (2018). – (Review).




de Azevedo Souza, C, Li, S, Lin, AZ, Boutrot, F, Grossmann, G, Zipfel, C, and Somerville, SC. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Phys doi:10.1104/pp.16.01680 (2017).


Xing, S, Mehlhorn, DG, Wallmeroth, N, Asseck, LY, Kar, R, Voss, A, Denninger, P, Schmidt, VA, Schwarzländer, M, Stierhof, YD, Grossmann, G, and Grefen, C. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1619525114 (2017).




Uslu, VV, and Grossmann, GThe biosensor toolbox for plant developmental biology. Curr Opin Plant Biol. 29:138-47. doi: 10.1016/j.pbi.2015.12.001 (2016). – (Review).


Stanley, CE, Grossmann, G, Casadevall i Solvas, X, and deMello, AJ. Soil-on-a-Chip: Microfluidic Platforms for Environmental Organismal Studies. Lab Chip.  16, 228-241 (2016). – (Review).




Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G, Schumacher K, and Krebs M. Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient [Ca2+]cyt Patterns in Arabidopsis. Mol Plant8(8), 1188-1200 (2015).


Ast, C, Frommer, WB, Grossmann, G, and De Michele, R. Quantification of Extracellular Ammonium Concentrations and Transporter Activity in Yeast Using AmTrac Fluorescent Sensors. Bio-protocol 5(1): e1372 (2015).




Denninger, P, Bleckmann, A, Lausser, A, Vogler, F, Ott, T, Ehrhardt, DW, Frommer, WB, Sprunck, S, Dresselhaus, T and Grossmann, G.  Male–Female Communication Triggers Calcium Signatures During Fertilization in Arabidopsis. Nat Commun5, 4645 (2014).

Jones, AM, Xuan, Y, Lalonde, S, Xu, M, Wang, RS, Ho CH, You, CH, Sardi, MI, Parsa, SA, Smith-Valle, E, Su, T, Frazer, KA, Pilot, G, Pratelli, R, Grossmann, G, Acharya, BR, Hu, HC, Engineer, C, Villiers, F, Ju, C, Takeda, K, Su, Z, Dong, Q, Assmann, SM, Chen, J, Kwak, JM, Schroeder, JI, Albert, R, Rhee, SY, and Frommer, WB.  Border control – a membrane-linked interactome of Arabidopsis. Science344 (6185), 711-716 (2014).

Jones, AM, Danielson, J, Manoj-Kumar, S, Lanquar, V, Grossmann, G, and Frommer, WB.  Abscisic acid dynamics in roots detected with genetically encoded FRET sensorseLife, 3:e01741 (2014).




Lanquar, V, Grossmann, G, Vinkenborg, JL, Merkx, M, Thomine, S, and Frommer, WB. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol., DOI: 10.1111/nph.12652 (2013).


DeMichele, R, Ast, C, Loqué, D, Ho, CH, Andrade, SL, Lanquar, V, Grossmann, G, Gehne, S, Kumke, MU, and Frommer, WB. Fluorescent sensors reporting the activity of ammonium transceptors in live cells. eLife 2013;2:e00800 (2013).

Malinsky, J, Opekarová, M, Grossmann, G, and Tanner, W. Membrane microdomains, rafts and detergent-resistant membranes in plants and fungi. Annu. Rev. Plant Biol. DOI: 10.1146/annurev-arplant-050312-120103, (2013). – (Review).


Jones, AM*, Grossmann, G*, Danielson, J, Sosso, D, Chen, LQ, Ho, CH, and Frommer, WB. In vivo biochemistry: Applications for small molecule biosensors in plant biology. Curr Opin Plant Biol. DOI: 10.1016/j.pbi.2013.02.010, (2013). – (Review).




Grossmann, G, Meier, M, Cartwright HN, Sosso, D, Quake, SR, Ehrhardt, DW, and Frommer, WB. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J. Vis. Exp., 65, e4290, DOI: 10.3791/4290 (2012).


Strádalová, V, Blažíková, M, Grossmann, G, Opekarová, M, Tanner, W, and Malinsky, J. Distribution of Cortical Endoplasmic Reticulum Determines Positioning of Endocytic Events in Yeast Plasma Membrane. PLoS ONE, 7, e35132, (2012).




Grossmann, G, Guo, W-J, Ehrhardt, DW, Frommer, WB, Sit, RV, Quake, SR, and Meier, M. The RootChip: An Integrated Microfluidic Chip for Plant Science. Plant Cell23 (12), 4234-4240, (2011).


Hou, B, Takanaga, H, Grossmann, G, Chen, L, Qu, X-Q, Jones, A, Lalonde, S, Schweissgut, O, Wiechert, W, and Frommer, WB. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat. Protoc.  6, 1818–1833, (2011).




Gutierrez, R*, Grossmann, G*, Frommer, WB, and Ehrhardt, DW. Opportunities to explore plant membrane organization with super-resolution microscopy. Plant. Physiol. 154, 463-466 (2010). – (Review)


Loibl, M, Grossmann, G, Strádalová, V, Klingl, A, Rachel, R, Tanner, W, Malinsky, J, and Opekarová, M. C terminus of Nce102 determines the structure and function of microdomains in the Saccharomyces cerevisiae plasma membrane. Eukaryot. Cell 9, 1184-1192, (2010).




Stradalova V, Stahlschmidt W, Grossmann G, Blazikova M, Rachel R, Tanner W and Malinsky J. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell. Sci. 122 (6), 2887-94, (2009).



2008 & earlier

Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarova M and Tanner W. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell. Biol. 183 (6), 1075-88, (2008).

Grossmann G and Tanner W. Kompartimente der Plasmamembran - Inseln der Ruhe in rauher See. BIOspektrum 14, 695-697, (2008). – (Review in German)


Lauwers E, Grossmann G and Andre B. Evidence for Coupled Biogenesis of Yeast Gap1 Permease and Sphingolipids: Essential Role in Transport Activity and Normal Control by Ubiquitination. Mol. Biol. Cell 18, 3068-80, (2007).


Grossmann G*, Opekarova M*, Malinsky J*, Weig-Meckl I and Tanner W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 26 (1) 1-8, (2007).

Grossmann G, Opekarova M, Novakova L, Stolz J and Tanner W. Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae. Eukaryot. Cell 5 (6), 945-53 (2006).


Hagen I, Ecker M, Lagorce A, Francois JM, Sestak S, Rachel R, Grossmann G, Hauser NC, Hoheisel JD, Tanner W and Strahl S. Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol. Microbiol. 52 (5), 1413-25 (2004).



* Equal contributions.



/var/www/cos/ / Dr. Guido Grossmann _e