Ruprecht-Karls-Universität Heidelberg
COS Heidelberg Banner
Developmental Physiology

Prof. Dr. Thomas Greb

Prof. Dr. Thomas Greb
Prof. Dr. Thomas Greb
Im Neuenheimer Feld 230
69120 Heidelberg
Fon +49 6221 54-5524
Fax +49 6221 54-6424
thomas.greb AET

Radial growth of plant shoots and roots is essential for the formation of wood and of large plant bodies, and thus for the creation of biomass on earth. Our lab uses this process as an example to reveal principles of growth and cell fate regulation in multicellular organisms.


In case you are interested in a postdoc or PhD student position, contact Thomas Greb.


Multi-cellularity is a fundamental concept of life on our planet. This concept of single cells taking over special functions in interaction with other cells in a multicellular body is striking and requires a very complex system of cell-to-cell communication. Elucidating comprehensive concepts of the development and function of multicellular systems is therefore challenging, but also essential to understand their functionality.

Radial growth of plant shoots and roots is based on the tissue-forming properties of a group of stem cells called the cambium, the activity of which leads to the production of secondary vascular tissue (xylem/"wood" and phloem/"bast"). Considering its function as a stem cell niche that is essential for the constant production of new tissues, as well as its dependence on environmental cues, the cambium represents an ideal model for addressing questions concerning the regulation of cell identity and how growth processes are aligned with endogenous and exogenous requirements. Given these attractive properties, our laboratory investigates radial plant growth in order to reveal general concepts of growth regulation in multicellular organisms at the interface between development and physiology.


Figure 1: Cross section from the hypocotyl (i.e. the root-to-shoot junction) of a five week-old Arabidopsis thaliana plant. Hypocotyl diameter is at this stage about 2 mm. The picture on the right shows the magnified cambial zone. Figure taken from Chiang et al., 2019.