Ruprecht-Karls-Universität Heidelberg
COS Heidelberg Banner

Dr. Roland Gromes

Dr. Roland Gromes
Dr. Roland Gromes
INF 360, R032
69120 Heidelberg
Fon +49 6221 54-5589
Fax +49 6221 54-5859
roland.gromes AET

The Centre of Organismal Studies Heidelberg builds on a strong tradition of basic and advanced teaching at the former institutes of botany and zoology. With the inception of COS, the task is now to integrate and further develop this teaching program to allow students to see beyond organismal boundaries and to actively participate in current research of our new centre. To this end, we teach students of the biosciences from their first steps, encompassing the introductory courses for general biology, biodiversity, biochemistry, physiology and molecular and cell biology, up to the completion of their bachelor, master and PhD theses.

We aim to guide them to a comprehensive understanding of biology at multiple levels of complexity ranging from single molecules to ecosystems. An important part in student training is the full integration of plant and animal biology to raise awareness for alternative solutions to similar biological problems during evolution. Since COS Heidelberg has a diverse research portfolio, it is also uniquely positioned to offer hands on research experience to many interested students early in their careers, with the hope to inspire them to become independent, innovative and successful scientists. My contribution to this task is to support lecturers in organizing and coordinating these efforts and to aid in the communication between students and teaching staff.


Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J, Gabius HJ. (2009). Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology.19(7):726-34.
Tumors that display a high level of microsatellite instability (MSI-H) accumulate somatic frameshift mutations in several genes. The compensation of this loss of function by transfection represents a suitable approach to tie respective gene deficiency to alterations in cellular characteristics. In view of the emerging significance of cell surface glycans as biochemical signals for presentation/activity of various receptors/integrins and for susceptibility to adhesion/growth-regulatory tissue lectins, we examined the glycophenotype in the MSI-H colon cancer cell line HCT116 for activin type 2 receptor (ACVR2), absent in melanoma 2 (AIM2), and transforming growth factor beta-type 2 receptor (TGFBR2) known to be associated with MSI colorectal carcinogenesis. A panel of probes specific for functional carbohydrate epitopes including human lectins was used to trace changes in cell surface levels, thereby initiating glycan analysis related to MSI. In particular, the presence of core substitutions and branching in N-glycans, the sialylation status of N- and O-glycans, and the presence of Le(a/x)-epitopes were profiled. Transient transfection affected the glycophenotype, depending on the nature of the gene and the probe. The TGFBR2 presence reduced binding of probes specific for a core substitution and increased branch length in N-glycosylation, even reaching a P-value of 0.0016. ACVR2/AIM2 influenced core 1 mucin-type O-glycosylation differentially, upregulation by ACVR2, and downregulation by AIM2. These alterations of cell surface glycosylation by gene products that are not directly associated with the machinery for glycan generation direct attention to pursue analysis of glycosylation in MSI tumor cells on the level of target glycoproteins and open the way for functional studies.



Roeckel N, Woerner SM, Kloor M, Yuan YP, Patsos G, Gromes R, Kopitz J, Gebert J. (2009). High frequency of LMAN1 abnormalities in colorectal tumors with microsatellite instability. Cancer Res.69(1):292-9.


Glycosyl epitopes have been identified as tumor-specific markers in colorectal tumors and various lines of evidence indicate the significance of altered synthesis, transport, and secretion of glycoproteins in tumorigenesis. However, aberrant glycosylation has been largely ignored in microsatellite unstable (MSI-H) colorectal tumors. Therefore, we analyzed mutation frequencies of genes of the cellular glycosylation machinery in MSI-H tumors, focusing on frameshift mutations in coding MNRs (cMNRs). Among 28 candidate genes, LMAN1/ERGIC53, a mannose-specific lectin mediating endoplasmatic reticulum (ER)-to-Golgi transit of glycosylated proteins, showed high mutation frequency in MSI-H colorectal cancer cell lines (52%; 12 of 23), carcinomas (45%; 72 of 161), and adenomas (40%; 8 of 20). Biallelic mutations were observed in 17% (4 of 23) of MSI-H colorectal cancer cell lines. LMAN1 was found to be transcribed but truncated protein remained undetectable in these LMAN1-mutant cell lines. Immunohistochemical and molecular analysis of LMAN1-mutated carcinomas and adenomas revealed regional loss of LMAN1 expression due to biallelic LMAN1 cMNR frameshift mutations. In LMAN1-deficient colorectal cancer cell lines, secretion of the LMAN1 client protein alpha-1-antitrypsin (A1AT), an inhibitor of angiogenesis and tumor growth, was significantly impaired but could be restored upon LMAN1 re-expression. These results suggest that LMAN1 mutational inactivation is a frequent and early event potentially contributing to MSI-H tumorigenesis.

Gromes R, Hothorn M, Lenherr ED, Rybin V, Scheffzek K, Rausch T. (2008). The redox switch of gamma-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. Plant J.54(6):1063-75.


In plants, the first committed enzyme for glutathione biosynthesis, gamma-glutamylcysteine ligase (GCL), is under multiple controls. The recent elucidation of GCL structure from Brassica juncea (BjGCL) has revealed the presence of two intramolecular disulfide bridges (CC1, CC2), which both strongly impact on GCL activity in vitro. Here we demonstrate that cysteines of CC1 are confined to plant species from the Rosids clade, and are absent in other plant families. Conversely, cysteines of CC2 involved in the monomer-dimer transition in BjGCL are not only conserved in the plant kingdom, but are also conserved in the evolutionarily related alpha- (and some gamma-) proteobacterial GCLs. Focusing on the role of CC2 for GCL redox regulation, we have extended our analysis to all available plant (31; including moss and algal) and related proteobacterial GCL (46) protein sequences. Amino acids contributing to the homodimer interface in BjGCL are highly conserved among plant GCLs, but are not conserved in related proteobacterial GCLs. To probe the significance of this distinction, recombinant GCLs from Nicotiana tabacum (NtGCL), Agrobacterium tumefaciens (AtuGCL, alpha-proteobacteria) and Xanthomonas campestris (XcaGCL, gamma-proteobacteria) were analyzed for their redox response. As expected, NtGCL forms a homodimer under oxidizing conditions, and is activated more than threefold. Conversely, proteobacterial GCLs remain monomeric under oxidizing and reducing conditions, and their activities are not inhibited by DTT, despite the presence of CC2. We conclude that although plant GCLs are evolutionarily related to proteobacterial GCLs, redox regulation of their GCLs via CC2-dependent dimerization has been acquired later in evolution, possibly as a consequence of compartmentation in the redox-modulated plastid environment.

Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galovic V, Wachter A. (2007). Novel insight into the regulation of GSH biosynthesis in higher plants. 4. Plant Biol (Stuttg). 2007 Sep;9(5):565-72.


In higher plants, the redox-active tripeptide glutathione (GSH) fulfills a plethora of functions. These include its pivotal role for maintaining the cellular redox poise and its involvement in detoxification of heavy metals and xenobiotics. Intimately linked to these functions, GSH also acts as a cellular signal, mediating control of enzyme and/or regulatory protein activities, either directly or via glutaredoxins. The redox potential of the GSH/GSSG couple is not only affected by the GSH/GSSG ratio but also by changes in GSH synthesis and/or degradation. As this couple operates as redox buffer in several cellular compartments, the regulation of GSH biosynthesis and transport (both intra- and intercellularly) are fundamental to the maintenance of cellular redox homeostasis during plant development and, even more so, when plants are exposed to biotic or abiotic stress. This review highlights novel aspects of GSH biosynthesis and transport with a focus on the regulation of the GSH1 (= gamma-glutamylcysteine synthetase) enzyme. Interestingly, GSH1 appears to be exclusively confined to the plastids, whereas the second biosynthetic enzyme, GSH2, is predominantly localized in the cytosol. GSH1 expression and enzyme activity are under multiple controls, extending from transcriptional regulation to post-translational redox control. Now that the plant GSH1 protein structure has been solved, the molecular basis of GSH1 function and redox regulation can be addressed. The review concludes with a discussion of the simultaneous changes observed for GSH synthesis, transport, and metabolism during Cd-induced phytochelatin accumulation.

Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K. (2006). Structural basis for the redox control of plant glutamate cysteine ligase. J Biol Chem.281(37):27557-65.


Glutathione (GSH) plays a crucial role in plant metabolism and stress response. The rate-limiting step in the biosynthesis of GSH is catalyzed by glutamate cysteine ligase (GCL) the activity of which is tightly regulated. The regulation of plant GCLs is poorly understood. The crystal structure of substrate-bound GCL from Brassica juncea at 2.1-A resolution reveals a plant-unique regulatory mechanism based on two intramolecular redox-sensitive disulfide bonds. Reduction of one disulfide bond allows a beta-hairpin motif to shield the active site of B. juncea GCL, thereby preventing the access of substrates. Reduction of the second disulfide bond reversibly controls dimer to monomer transition of B. juncea GCL that is associated with a significant inactivation of the enzyme. These regulatory events provide a molecular link between high GSH levels in the plant cell and associated down-regulation of its biosynthesis. Furthermore, known mutations in the Arabidopsis GCL gene affect residues in the close proximity of the active site and thus explain the decreased GSH levels in mutant plants. In particular, the mutation in rax1-1 plants causes impaired binding of cysteine.


Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T. (2006). Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. 3. J Exp Bot. 2006;57(14):3575-82.


The protective function of a plant type-2 metallothionein was analysed after expression in Escherichia coli and in Arabidopsis thaliana seedlings. BjMT2 from Brassica juncea was expressed in E. coli as a TrxABjMT2 fusion protein. After affinity chromatography and cleavage from the TrxA domain, pure BjMT2 protein was obtained which strongly reacted with the thiol reagent monobromobimane. Escherichia coli cells expressing the TrxABjMT2 fusion were more tolerant to Cu2+ and Cd2+ exposure than control strains. Likewise, when BjMT2 cDNA was expressed in A. thaliana under the regulation of the 35S promoter, seedlings exhibited an increased tolerance against Cu2+ and Cd2+ based on shoot growth and chlorophyll content. Analysis of transiently transformed cells of A. thaliana and tobacco leaves by confocal laser scanning microscopy (CLSM) revealed exclusive cytosolic localization of a BjMT2::EGFP (enhanced green fluorescent protein) fusion protein in control and heavy metal-exposed plant cells. Remarkably, ectopic expression of BjMT2 reduced root growth in the absence of heavy metal exposure, whereas in the presence of 50 or 100 microM Cu2+ root growth in control and transgenic lines was identical. The results indicate that in A. thaliana, root and shoot development are differentially affected by ectopic expression of BjMT2.


/var/www/cos/ / Dr. Roland Gromes _e