Developmental PhysiologyDr. Steffen Greiner

PMEI-related inhibitor proteins: Their roles in the regulation of sugar and pectin metabolism. Sucrose-hydrolyzing invertases in the cell wall and the vacuole, and cell wall-localized pectin methylesterases are post-translationally regulated by inhibitory proteins belonging to the same protein family: pectin methylesterase inhibitor-related proteins (PMEI-RP).

PMEI-RPs are predicted to serve multiple functions in sugar and cell wall metabolism during plant development and in response to stress exposure. This project aims at unraveling the roles of different PMEI-RPs in different plant species, plant organs and cell types. Furthermore, the biotechnological potential of up- or down-regulation of certain PMEI-RP isoforms in selected crop species is explored. 

Steffen Greiner
Diese Seite ist derzeit nur verfügbar in Englisch.

Inulin metabolism in Chicory

Inulin is used as carbohydrate storage compound in plants but may also be involved in several stress responses. The economically most important source is chicory, which accumulates inulin in its taproots. Biotechnological goals are to increase inulin yield and its degree of polymerization (DP). Enzymes responsible for inulin biosynthesis in chicory are sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT), inulin degradation is catalyzed by fructan 1-exohydrolases (1-FEHs). We are investigating the possibility of post-translational control of FAZYs via proteinaceous inhibitors, as found for acid invertases, enzymes evolutionarily and structurally related to FAZYs. We are pursuing 3 different strategies in order to isolate FAZY specific inhibitors: a) affinity chromatography with recombinant FAZY proteins as bait; b) Deep Sequencing of chicory cDNAs; c) Invertase inhibitor engineering.

Additionally, we have established the chicory hairy root culture (CiHRC) as a model system to explore regulatory mechanisms impacting on inulin metabolism in planta. We are currently studying aspects of hormonal regulation of FAZYs in CiHRC.

Relevant publications

  • Huang, X.; Luo, W.; Wu, S.; Long, Y.; Li, R.; Zheng, F.; Greiner, S.; Rausch, T.; Zhao, H. 2020 Apoplastic maize fructan exohydrolase Zm-6-FEH displays substrate specificity for levan and is induced by exposure to levan-producing bacteria Int J Biol Macromol 163 630-639 doi: 10.1016/j.ijbiomac.2020.06.254

    Pubmed

  • Wei, H.; Bausewein, A.; Greiner, S.; Dauchot, N.; Harms, K.; Rausch, T. 2017 CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation New Phytol 215 1 281-298 doi: 10.1111/nph.14563

    Pubmed

  • Su, T.; Wolf, S.; Han, M.; Zhao, H.; Wei, H.; Greiner, S.; Rausch, T. 2016 Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth Plant Mol Biol 90 1-2 137-155 doi: 10.1007/s11103-015-0402-2

    Pubmed

  • Wei, H.; Bausewein, A.; Steininger, H.; Su, T.; Zhao, H.; Harms, K.; Greiner, S.; Rausch, T. 2016 Linking Expression of Fructan Active Enzymes, Cell Wall Invertases and Sucrose Transporters with Fructan Profiles in Growing Taproot of Chicory (Cichorium intybus): Impact of Hormonal and Environmental Cues Front Plant Sci 7 1806 doi: 10.3389/fpls.2016.01806

    Pubmed

  • Althoff, F.; Benzing, K.; Comba, P.; McRoberts, C.; Boyd, D.R.; Greiner, S.; Keppler, F. 2014 Abiotic methanogenesis from organosulphur compounds under ambient conditions Nat Commun 5 4205 doi: 10.1038/ncomms5205

    Pubmed

  • Wolf, S.; van der Does, D.; Ladwig, F.; Sticht, C.; Kolbeck, A.; Schurholz, A.-K.; Augustin, S.; Keinath, N.; Rausch, T.; Greiner, S.; Schumacher, K.; Harter, K.; Zipfel, C.; Hofte, H. 2014 A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling Proc Natl Acad Sci U S A 111 42 15261-15266 doi: 10.1073/pnas.1322979111

    Pubmed

  • Wolf, S.; Mravec, J.; Greiner, S.; Mouille, G.; Hofte, H. 2012 Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling Curr Biol 22 18 1732-1737 doi: 10.1016/j.cub.2012.07.036

    Pubmed

  • Wolf, S.; Greiner, S. 2012 Growth control by cell wall pectins Protoplasma 249 Suppl 2 S169-75 doi: 10.1007/s00709-011-0371-5

    Pubmed

  • Siemens, J.; Gonzalez, M.-C.; Wolf, S.; Hofmann, C.; Greiner, S.; DU, Y.; Rausch, T.; Roitsch, T.; Ludwig-Muller, J. 2011 Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana Mol Plant Pathol 12 3 247-262 doi: 10.1111/j.1364-3703.2010.00667.x

    Pubmed

  • Wishkerman, A.; Greiner, S.; Ghyczy, M.; Boros, M.; Rausch, T.; Lenhart, K.; Keppler, F. 2011 Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase Plant Cell Environ 34 3 457-464 doi: 10.1111/j.1365-3040.2010.02255.x

    Pubmed

  • Kusch, U.; Harms, K.; Rausch, T.; Greiner, S. 2009 Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism New Phytol 181 3 601-612 doi: 10.1111/j.1469-8137.2008.02688.x

    Pubmed

  • Kusch, U.; Greiner, S.; Steininger, H.; Meyer, A.D.; Corbiere-Divialle, H.; Harms, K.; Rausch, T. 2009 Dissecting the regulation of fructan metabolism in chicory (Cichorium intybus) hairy roots New Phytol 184 1 127-140 doi: 10.1111/j.1469-8137.2009.02924.x

    Pubmed

  • Wolf, S.; Rausch, T.; Greiner, S. 2009 The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus Plant J 58 3 361-375 doi: 10.1111/j.1365-313X.2009.03784.x

    Pubmed

  • Rockel, N.; Wolf, S.; Kost, B.; Rausch, T.; Greiner, S. 2008 Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins Plant J 53 1 133-143 doi: 10.1111/j.1365-313X.2007.03325.x

    Pubmed

  • Hothorn, M.; D'Angelo, I.; Marquez, J.A.; Greiner, S.; Scheffzek, K. 2004 The invertase inhibitor Nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension J Mol Biol 335 4 987-995

    Pubmed

  • Hothorn, M.; Wolf, S.; Aloy, P.; Greiner, S.; Scheffzek, K. 2004 Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins Plant Cell 16 12 3437-3447 doi: 10.1105/tpc.104.025684

    Pubmed

  • Link, M.; Rausch, T.; Greiner, S. 2004 In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles FEBS Lett 573 1-3 105-109 doi: 10.1016/j.febslet.2004.07.062

    Pubmed

  • Rausch, T.; Greiner, S. 2004 Plant protein inhibitors of invertases Biochim Biophys Acta 1696 2 253-261 doi: 10.1016/j.bbapap.2003.09.017

    Pubmed

  • Hothorn, M.; Bonneau, F.; Stier, G.; Greiner, S.; Scheffzek, K. 2003 Bacterial expression, purification and preliminary X-ray crystallographic characterization of the invertase inhibitor Nt-CIF from tobacco Acta Crystallogr D Biol Crystallogr 59 Pt 12 2279-2282

    Pubmed

  • Wolf, S.; Grsic-Rausch, S.; Rausch, T.; Greiner, S. 2003 Identification of pollen-expressed pectin methylesterase inhibitors in Arabidopsis FEBS Lett 555 3 551-555

    Pubmed

  • Rosenkranz, H.; Vogel, R.; Greiner, S.; Rausch, T. 2001 In wounded sugar beet (Beta vulgaris L.) tap-root, hexose accumulation correlates with the induction of a vacuolar invertase isoform J Exp Bot 52 365 2381-2385

    Pubmed