icon-symbol-logout-darkest-grey
Diese Seite ist nur auf Englisch verfügbar.

Heinrich Heine University Düsseldorf, DEProf. Guido Grossmann

The plasma membrane of cells acts as the interface between the inner living world and the environment. Neighboring cells or substrates, biotic or abiotic stresses, toxins or nutrients are perceived at the plasma membrane, eliciting intracellular responses. In return, these responses manifest in dynamic reorganization of the membrane itself, which is a key requirement for the establishment of cell polarity.

Our lab uses plants as a model system to study mechanisms that allow the plasma membrane to accomplish the interface function by sensing and processing information about its environment and to polarize the cell by forming subcompartments for directed transport of nutrients and metabolites.

The Grossmann lab has moved from COS to the Heinrich-Heine-University Düsseldorf.

Please visit the Insitute for Cell and Interaction Biology for information about our research, teaching and open positions.
Prof. Dr. Guido Grossmann
Heinrich-Heine-Universität Düsseldorf
Institute of Cell and Interaction Biology
CEPLAS Cluster of Excellence on Plant Sciences
Universitätsstraße 1 / Geb. 26.44 U1
40225 Düsseldorf
Germany

We are focussing on the following processes:

  • control of lateral diffusion of proteins at the plasma membrane,
  • impact of cell wall and cytoskeleton on membrane organization,
  • dynamics and coordination of the establishment of cell polarity,
  • signaling processes in response to signal perception.
grossmann maxroot

Tool development

Microfluidic imaging platforms

The RootChip is an integrated cultivation, perfusion, and imaging device for Arabidopsis roots. It allows growing roots for several days directly at the microscope, precise control over the microenvironment, and pulsed treatments.

Genetically encoded fluorescent biosensors

Sensors for nutrients like sugars, second messengers such as calcium, or hormones allow the visualization of molecule dynamics in a living organism at high temporal and spatial resolution.

  • Zum Vollbildmodus wechseln

    Glucose Sensor
  • Zum Vollbildmodus wechseln

    cpGFP-Diagram
  • Zum Vollbildmodus wechseln

    Rootchip
  • Zum Vollbildmodus wechseln

    Rootchip perfusion

Publications

 2021

  • Yanagisawa, N, Kozgunova, E, Grossmann, G, Geitmann, A, and Higashiyama, T. Microfluidics-based Bioassays and Imaging of Plant Cells. Plant Cell Phys. doi: 10.1093/pcp/pcab067 (2021)
  • Rizza, A. Tang, B, Stanley, CE, Grossmann, G, Owen, MR, Band, LR and Jones, AM. Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1921960118 (2021)

2020

  • Guichard, M, Bertran Garcia de Olalla, E, Stanley, CE and Grossmann, G. Microfluidic systems for plant root imaging. Meth. Cell Biol doi: 10.1016/bs.mcb.2020.03.012 (2020)
  • Guichard, M and Grossmann, G. On-site manufacturing in tip-growing cells through RALF1-FERONIA-mediated local mRNA translation. Mol. Plant doi: 10.1016/j.molp.2020.03.006 (2020)
  • Clark, NM, Van den Broeck, L, Guichard, M, Stager, A, Tanner, HG, Blilou, I, Grossmann, G, Iyer-Pascuzzi, AS, Maizel, A, Sparks, EE, and Sozzani, R. Novel Imaging Modalities Shedding Light on Plant Biology: Start Small and Grow Big. Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100038 (2020)
     

2019

  • Denninger, P, Reichelt, A, Schmidt, VAF, Mehlhorn, DG, Asseck, LY, Stanley, CE, Keinath, NF, Evers, JF, Grefen, C, and Grossmann, G. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr. Biol. doi: 10.1016/j.cub.2019.04.059; preprint on bioRxiv doi: 10.1101/534545 (2019)
  • Brost, C, Studtrucker, T, Reimann, R, Denninger, P, Czekalla, J, Krebs, M, Fabry, B, Schumacher, K, Grossmann, G, and Dietrich P. Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. Plant J. doi: 10.1111/tpj.14371 (2019)

2018

  • Wan, W-L, Zhang, L, Pruitt, R, Zaidem, M, Brugman, R, Ma, X, Krol, E, Perraki, A, Kilian, J, Grossmann, G, Stahl, M, Shan, L, Zipfel, C, van Kan, JAL, Hedrich, R, Weigel, D, Gust, AA, and Nürnberger, T. Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytol. doi: 10.1111/nph.15497. (2018)
  • Stanley, CE, Shrivastava, J, Brugman, R, Heinzelmann, E, Frajs, V, Bühler, A, van Swaay, D, and Grossmann, G. Fabrication and Use of the Dual-Flow-RootChip for the Imaging of Arabidopsis Roots in Asymmetric Microenvironments. Bio-protocol 8(18): e3010. DOI: 10.21769/BioProtoc.3010. (2018)
  • Stanley, CE, Shrivastava, J, Brugman, R, Heinzelmann, E, van Swaay, D, and Grossmann, G. Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels. New Phytol; doi: 10.1111/nph.14887. Preprint available on bioRxiv doi: 10.1101/126987 (2018)
  • Grossmann, G*, Krebs, M*, Maizel, A*, Stahl, Y*, Vermeer, JEM*, and Ott, T. Green light for quantitative live-cell imaging in plants. J Cell Sci; doi: 10.1242/jcs.209270 (2018). – (Review).

2017

  • de Azevedo Souza, C, Li, S, Lin, AZ, Boutrot, F, Grossmann, G, Zipfel, C, and Somerville, SC. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Phys doi:10.1104/pp.16.01680 (2017).
  • Xing, S, Mehlhorn, DG, Wallmeroth, N, Asseck, LY, Kar, R, Voss, A, Denninger, P, Schmidt, VAF, Schwarzländer, M, Stierhof, YD, Grossmann, G, and Grefen, C. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1619525114 (2017).

2016

  • Uslu, VV, and Grossmann, G. The biosensor toolbox for plant developmental biology. Curr Opin Plant Biol. 29:138-47. doi: 10.1016/j.pbi.2015.12.001 (2016). – (Review).
  • Stanley, CE, Grossmann, G, Casadevall i Solvas, X, and deMello, AJ. Soil-on-a-Chip: Microfluidic Platforms for Environmental Organismal Studies. Lab Chip.  16, 228-241 (2016). – (Review).

2015

  • Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G, Schumacher K, and Krebs M. Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient [Ca2+]cyt Patterns in Arabidopsis. Mol Plant, 8(8), 1188-1200 (2015).
  • Ast, C, Frommer, WB, Grossmann, G, and De Michele, R. Quantification of Extracellular Ammonium Concentrations and Transporter Activity in Yeast Using AmTrac Fluorescent Sensors. Bio-protocol 5(1): e1372 (2015).

2014

  • Denninger, P, Bleckmann, A, Lausser, A, Vogler, F, Ott, T, Ehrhardt, DW, Frommer, WB, Sprunck, S, Dresselhaus, T and Grossmann, G.  Male–Female Communication Triggers Calcium Signatures During Fertilization in Arabidopsis. Nat Commun, 5, 4645 (2014).
  • Jones, AM, Xuan, Y, Lalonde, S, Xu, M, Wang, RS, Ho CH, You, CH, Sardi, MI, Parsa, SA, Smith-Valle, E, Su, T, Frazer, KA, Pilot, G, Pratelli, R, Grossmann, G, Acharya, BR, Hu, HC, Engineer, C, Villiers, F, Ju, C, Takeda, K, Su, Z, Dong, Q, Assmann, SM, Chen, J, Kwak, JM, Schroeder, JI, Albert, R, Rhee, SY, and Frommer, WB.  Border control – a membrane-linked interactome of Arabidopsis. Science, 344 (6185), 711-716 (2014).
  • Jones, AM, Danielson, J, Manoj-Kumar, S, Lanquar, V, Grossmann, G, and Frommer, WB.  Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife, 3:e01741 (2014).

2013

  • Lanquar, V, Grossmann, G, Vinkenborg, JL, Merkx, M, Thomine, S, and Frommer, WB. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol., DOI: 10.1111/nph.12652 (2013).
  • DeMichele, R, Ast, C, Loqué, D, Ho, CH, Andrade, SL, Lanquar, V, Grossmann, G, Gehne, S, Kumke, MU, and Frommer, WB. Fluorescent sensors reporting the activity of ammonium transceptors in live cells. eLife 2013;2:e00800 (2013).
  • Malinsky, J, Opekarová, M, Grossmann, G, and Tanner, W. Membrane microdomains, rafts and detergent-resistant membranes in plants and fungi. Annu. Rev. Plant Biol. DOI: 10.1146/annurev-arplant-050312-120103, (2013). – (Review).
  • Jones, AM*, Grossmann, G*, Danielson, J, Sosso, D, Chen, LQ, Ho, CH, and Frommer, WB. In vivo biochemistry: Applications for small molecule biosensors in plant biology. Curr Opin Plant Biol. DOI: 10.1016/j.pbi.2013.02.010, (2013). – (Review).

2012

  • Grossmann, G, Meier, M, Cartwright HN, Sosso, D, Quake, SR, Ehrhardt, DW, and Frommer, WB. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J. Vis. Exp., 65, e4290, DOI: 10.3791/4290 (2012).
  • Strádalová, V, Blažíková, M, Grossmann, G, Opekarová, M, Tanner, W, and Malinsky, J. Distribution of Cortical Endoplasmic Reticulum Determines Positioning of Endocytic Events in Yeast Plasma Membrane. PLoS ONE, 7, e35132, (2012).

2011

  • Grossmann, G, Guo, W-J, Ehrhardt, DW, Frommer, WB, Sit, RV, Quake, SR, and Meier, M. The RootChip: An Integrated Microfluidic Chip for Plant Science. Plant Cell, 23 (12), 4234-4240, (2011).
  • Hou, B, Takanaga, H, Grossmann, G, Chen, L, Qu, X-Q, Jones, A, Lalonde, S, Schweissgut, O, Wiechert, W, and Frommer, WB. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat. Protoc.  6, 1818–1833, (2011).

2010 and earlier

  • Gutierrez, R*, Grossmann, G*, Frommer, WB, and Ehrhardt, DW. Opportunities to explore plant membrane organization with super-resolution microscopy. Plant. Physiol. 154, 463-466 (2010). – (Review)
  • Loibl, M, Grossmann, G, Strádalová, V, Klingl, A, Rachel, R, Tanner, W, Malinsky, J, and Opekarová, M. C terminus of Nce102 determines the structure and function of microdomains in the Saccharomyces cerevisiae plasma membrane. Eukaryot. Cell 9, 1184-1192, (2010).
  • Stradalova V, Stahlschmidt W, Grossmann G, Blazikova M, Rachel R, Tanner W and Malinsky J. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell. Sci. 122 (6), 2887-94, (2009).
  • Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarova M and Tanner W. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell. Biol. 183 (6), 1075-88, (2008).
  • Grossmann G and Tanner W. Kompartimente der Plasmamembran - Inseln der Ruhe in rauher See. BIOspektrum 14, 695-697, (2008). – (Review in German)
  • Lauwers E, Grossmann G and Andre B. Evidence for Coupled Biogenesis of Yeast Gap1 Permease and Sphingolipids: Essential Role in Transport Activity and Normal Control by Ubiquitination. Mol. Biol. Cell 18, 3068-80, (2007).
  • Grossmann G*, Opekarova M*, Malinsky J*, Weig-Meckl I and Tanner W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 26 (1) 1-8, (2007).
  • Grossmann G, Opekarova M, Novakova L, Stolz J and Tanner W. Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae. Eukaryot. Cell 5 (6), 945-53 (2006).
  • Hagen I, Ecker M, Lagorce A, Francois JM, Sestak S, Rachel R, Grossmann G, Hauser NC, Hoheisel JD, Tanner W and Strahl S. Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol. Microbiol. 52 (5), 1413-25 (2004).